The Charney-davis Quantity for Certain Graded Posets
نویسندگان
چکیده
Given a naturally labelled graded poset P with r ranks, the alternating sum W (P,−1) := ∑
منابع مشابه
Sign-Graded Posets, Unimodality of W-Polynomials and the Charney-Davis Conjecture
We generalize the notion of graded posets to what we call sign-graded (labeled) posets. We prove that the W -polynomial of a sign-graded poset is symmetric and unimodal. This extends a recent result of Reiner and Welker who proved it for graded posets by associating a simplicial polytopal sphere to each graded poset. By proving that the W -polynomials of sign-graded posets has the right sign at...
متن کاملOn the Charney-Davis and Neggers-Stanley conjectures
For a graded naturally labelled poset P , it is shown that the P -Eulerian polynomial
متن کاملThe Charney-Davis Conjecture for Certain Subdivisions of Spheres
Notions of sesquiconstructible complexes and odd iterated stellar subdivisions are introduced, and some of their basic properties are verified. The Charney-Davis conjecture is then proven for odd iterated stellar subdivisions of sesquiconstructible balls and spheres.
متن کاملChess Tableaux
A chess tableau is a standard Young tableau in which, for all i and j, the parity of the entry in cell (i, j) equals the parity of i + j + 1. Chess tableaux were first defined by Jonas Sjöstrand in his study of the sign-imbalance of certain posets, and were independently rediscovered by the authors less than a year later in the completely different context of composing chess problems with inter...
متن کاملHopf Algebras and Edge-labeled Posets
Given a nite graded poset with labeled Hasse diagram, we construct a quasi-symmetric generating function for chains whose labels have xed descents. This is a common generalization of a generating function for the ag f-vector de-ned by Ehrenborg and of a symmetric function associated to certain edge-labeled posets which arose in the theory of Schubert polynomials. We show this construction gives...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003